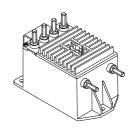


Voltage Transducer CV 3-1200


For the electronic measurement of voltages: DC, AC, pulsed..., with a galvanic isolation between the primary circuit (high voltage) and the secondary circuit (electronic circuit).

$V_{PN} = 840 \text{ V}$

Electrical data

$\mathbf{V}_{_{PN}}$	Primary nominal r.m.s. voltage	840	V
V _P	Primary voltage, measuring range	0 ± 1200	V
v s	Secondary analog voltage @ V _{P max}	10	V
K _N	Conversion ratio	1200 V/10 V	
R,	Load resistance	з 1	$k\Omega$
C	Capacitive loading	£ 5	nF
v _c	Supply voltage (± 5 %)	± 15	V
I _c	Current consumption	$32 + V_{s}/R_{l}$	mΑ
V _d	R.m.s. voltage for AC isolation test, 50 Hz, 1 mn	6	kV
V _e	R.m.s. voltage for partial discharge extinction		
-	@ 10 pC	2	kV

Accuracy -	Dynamic	nerforman	ce data
ACCUIACY -	DVIIAIIIIG	Delibiliai	ice uata

			Max	_
$\mathbf{X}_{_{\mathrm{G}}}$	Overall accuracy @ V _{P max}	$T_A = 25^{\circ}C$	± 0.2	2 %
		- 40°C + 85°C	± 0.6	%
$V_{\rm o}$	Offset voltage @ $\mathbf{V}_{p} = 0$	$T_A = 25^{\circ}C$	± 5	m۷
		- 40°C + 85°C	± 13	mV
t,	Response time 1) @ 90 % of V _{PN}		0.3	μs
dv/dt	dv/dt accurately followed		900	V/µs
f	Frequency bandwidth (- 1 dB) @ 40 % of $\mathbf{V}_{_{\mathrm{PN}}}$		DC 800	kHz

General data

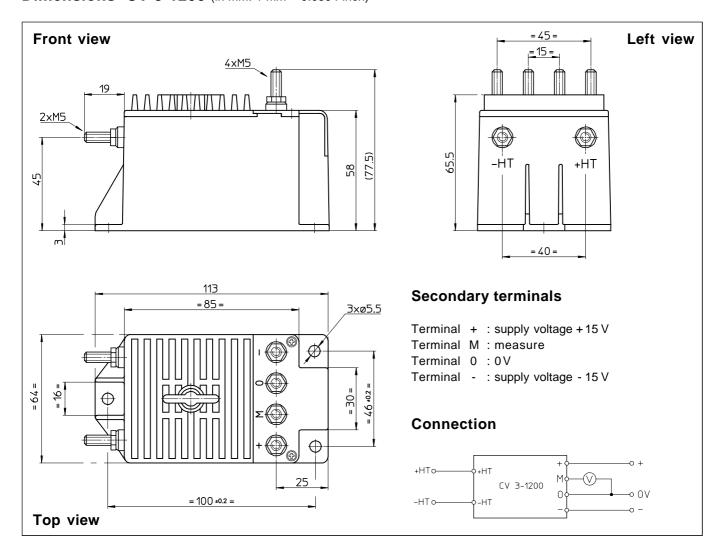
T _A	Ambient operating temperature	- 40 + 85	°C
T _s	Ambient storage temperature	- 45 + 90	°C
P	Total primary power loss	3.1	W
$\mathbf{R}_{_{1}}$	Primary resistance	230.4	$k\Omega$
m	Mass	560	g
	Standards	EN 50155	

Features

- Closed loop (compensated) voltage transducer
- Insulated plastic case recognized according to UL 94-V0
- Patent pending.

Advantages

- Excellent accuracy
- Very good linearity
- Low thermal drift
- Low response time
- High bandwidth
- High immunity to external interference
- Low disturbance in common mode.


Applications

- AC variable speed drives and servo motor drives
- Static converters for DC motor drives
- Uninterruptible Power Supplies (UPS)
- Power supplies for welding applications
- Railway overhead line voltage measurement.

Note: 1) With a dv/dt of 900 V/µs.

Dimensions CV 3-1200 (in mm. 1 mm = 0.0394 inch)

Mechanical characteristics

- General tolerance
- Fastening of the transducer
- Connection of primary
- · Connection of secondary
- Fastening torque

± 0.3 mm

3 holes \varnothing 5.5 mm M5 threaded studs

M5 threaded studs

2.2 Nm or 1.62 Lb. -Ft.

Remarks

- \bullet $\mathbf{V}_{_{\mathrm{S}}}$ is positive when $\mathbf{V}_{_{\mathrm{P}}}$ is applied on terminal +HT.
- CEM tested with a shielded secondary cable, shield connected to 0 V at both ends, or disconnected.
- This is a standard model. For different versions (supply voltages, turns ratios, unidirectional measurements...), please contact us.